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Short Communication

Isolation and Screening of Actinobacterial Isolates: Promising agents for
Biodegradation of Monocrotophos pesticides

Abhishek Mathur', Ankita Rani>", Sanjay Gupta®

'Dept of Research and Development, Prathista Industries Limited, Telangana State, India; *Dept. of
Biotechnology. Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun,
Uttarakhand. India

Abstract: Actinobacterial isolates are the effective microbes responsible for production of
several metabolites and drugs. There are different remarkable properties of Actinobacteria for
which these are explored and thus are the first choice of microbiologists and researchers
working on natural and novel compounds. In the present study, actinobacterial isolates were
isolated to explore the biodegradation properties for degradation of monocrotophos pesticides.
In the present study, total 120 Soil samples were aseptically collected from different field regions
of Uttarakhand viz. Tehri-Garhwal, Chamoli, Srinagar, Ulttarkashi and Haridwar where
prevalent usage of monocrotophos pesticides was done. Amongst all the samples, 280 microbes
were isolated; out of which 24 isolates of Actinobacteria (8.57 %) were isolated which belong to
the genera viz. Micromonospora (65%), Actinomycetes (25%) and Streptomyces (10%) meant to
be responsible for biodegradation of monocrotophos pesticides.

Keywords: Chemical toxicity, Monocrotophos pesticides, organophosphate, biodegradation,
bioremediation, actinobacterial isolates, pesticides degradation.

1. INTRODUCTION

The over usage of chemicals and pesticides toxicity have been a meager issue in agriculture and farming
practices. These chemicals not only leave toxic residues in the soil but also enters in the food chain and
ccosystem. Monocrotophos is poisonous organophosphates observed all cross the country and are widely
used for agriculture. It is a direct acting cholinesterase inhibitor capable of penetration through the skin.
Symptoms are similar to those of other organophosphate compounds but effect can be observed within
minutes or in a day. Its cholinesterase inhibiting activity causes nervous system effects. Cases of human
poisoning are characterized by muscular weakness, blurred vision, profuse perspiration, confusion,
vomiting, pain, and small pupils. This may involve vomiting, diarrhea, nausea, headache. abdominal
cramps ctc. Severe poisoning due to monocrotophos causes cardiac arrest or respiratory failure which
leads to death of person in the severe cases [1-5]. The two main Organizations related to health and
agriculture (FAO) and WHO encouraged countries to list out pesticides having highly hazardous
components. Many countries involved Australia, China, the European Union, Cambodia, Laos, Indonesia,
Philippines, Vietnam Sri Lanka, Thailand: the United States of America banned the use of
monocrotophos. To take off this from market urgent steps should be taken. Many developing countries of
Asia also have banned the use of monocrotophos as it causes high health risks. India is very much
familiar with the threats of pesticides. But in the fields of rural India, pesticides like monocrotophos is
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continuously produced, used and exported in India. The reason behind this is that it is cheap and
necessary for agricultural productivity [6-10].

2. MATERIALS AND METHODS
2.1 Collection and preparation of soil sample

In the present study, total of 120 Soil samples till date were aseptically collected from different field
regions of Uttarakhand viz. Tehri-Garhwal, Chamoli, Srinagar, Uttarkashi and Haridwar having dominant
usage of monocrotophos pesticides. Soil samples (approx. 500 g) were collected using some clean, dry
and sterile polythene bags along with sterile spatula, marking pen rubber band and other accessories.
These samples were air-dried for 1 week. crushed and sieved. The sieved soils were then used for
actinomycetes isolation as per the series wise methods as follows-

2.2 Isolation of Actinomycetes

About 5 grams of the soil were suspended in 50 ml of Normal saline (NaCl-0-85g/L). The soil suspension

3

was incubated in an orbital shaker incubator at 28 0C with shaking at 200 rpm for 3 minutes.
Actinomycetes were isolated by spread plate techniques following the serial dilution of soil in YIM6
Starch- casein medium.

Different salt mixtures viz. NaCl- 100-150 g: KCI- 20 g: MgCI2- 30 g; MgSO4- 5 g: K2HPO4- 1g;
Starch- 20 g: Casein/milk powder- 10 g.

The pH of each of the above medium was maintained from 10-12. In each of the medium. nalidixic acid
(25-50 g/liter) was added. Isolated plates were incubated at 28°C for 25-35 days for the observation of
growth of Actinomycetes [11-15].

These are discussed below:

2.2.1 Aerial Mass Color

The colour of the mature sporulating aerial mycelium is recorded in an exceedingly straightforward
method (White, grey, red. green, blue and violet). Once the aerial mass color falls between two colors
series, both the colors are recorded. If the aerial mass color of a strain to be studied shows intermediate
tints, then also, both the colors series are noted [16].

2.2.2 Melanoid Pigments

The grouping is formed on the assembly of melanoid pigments (i.e. light-green brown, brown black or
distinct brown, pigment changed by alternative colors) on the medium. The strains are grouped as
melanoid pigment created (+) and not created (-) [17].

2.2.3 Reverse Side Pigments

The strains were divided into two groups, consistent with their ability to provide characteristic pigments
on the reverse aspect of the colony, namely, distinctive (+) and not distinctive or none (-). In case, a color
with low saturation like yellowness. olive or yellowish brown occurs, it is included in the latter group (-)
[18-20].

Volume 8, Issue 08, 2022 Page No :594

145



Zeichen Journal ISSN No: 0932-4747

2.2.4 Soluble Pigments

The strains are divided into two groups by their ability to provide soluble pigments apart from melanin:
particularly, produced (+) and not produced (-). The color is recorded (orange. red, green, violet, blue and
yellow) [21-22].

2.2.5 Spore Chain Morphology

With relevancy to spore chains, the strains are sorted into “sections”. The species belonging to the genus
Streptomyces are divided into three sections (Shirling and Gottlieb 1966). particularly recti-flexibiles
(RF), retina-culiaperti (RA) and spirales (S). Once a strain forms two types of spore chains, both are noted
[23-25].

2.2.6 Reproductive Structure Surface

Spore morphology and its surface options ought to be determined under the scanning electron
microscope. The cross hatched cultures arranged for observation under the light microscope can be used
for this purpose. The electron grid ought to be cleaned and adhesive tape should be placed on the surface
of the grid. The mature spores of the strain ought to be rigorously placed on the surface of the adhesive
tape and gold coating should be applied for half an hour and also the specimen is examined under the
clectron microscope at completely different magnifications. The reproductive structure silhouettes are
characterized as spiny, smooth, warty and hairy [26].

3. RESULTS AND DISCUSSION

In the study, field areas of Uttarakhand region (Tehri-Garhwal, Chamoli, Srinagar, Uttarkashi and
Haridwar) having dominant usage of monocrotophos pesticides. Amongst these samples. total of 280
microbes were isolated; out of which 24 isolates of Actinobacteria (8.57 %) were isolated. The results
are shown in Table 1 and Figure 1. The actinobacteria isolates were screened on specific agar media and
characterized by morphological colonies appearance and staining procedures. The actinobacteria isolates
were categorized on the basis of a) type of pigment production (Table 2) and colony and color (Table 3)
and Figure 2. These actinobacterial isolates were further screened for their identification by molecular.
The results revealed the strains of the genera viz. Micromonospora (65%), Actinomycetes (25%) and
Streptomyces (10%). The actinobacterial isolates were found in high density in the soil enriched with
monocrotophos pesticides [27-28].

4. CONCLUSION

The study revealed that, actinobacterial isolates density gets increased as per the availability and
accumulation of pesticides in the soil. The studies revealed that, actinobacterial isolates can be utilized for
the biodegradation of pesticides. The studies are however required in order to isolate and explore such
microbial strains for biodegradation of monocrotophos pesticides.
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Table 1: Actinomycetes isolates (percent diversity) on YIMG6 starch- casein agar medium
Soil sample Total no. of Actinobacteria Percent diversity | Percent diversity
microbes isolated | isolates of microbes of actinobacteria
isolated isolated
120 256 24 91.42 8.57
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Figure 1: Actinomycetes isolates (percent diversity) on YIMG starch- casein agar medium
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Table 2: Characterization of

ISSN No: 0932-4747

isolatedActinobacterial strains on the basis of pigment

production
$.n0. Strain code Pigment production
Melanoid pigment | Reverse side Soluble pigment
pigment

1 ASUKO3 + + +
2 ASUKO07 - + +
3 ASUK254 - + +
4 ASUK145 + + +
5 ASUKG67 + + +
6 ASUKS86 G + +
7 ASUK46 + + +
8 ASUK34 + + +
9 ASUK23 + + +
10 ASUK60 + + +
11 ASUK79 + + +
12 ASUK?224 - + +
13 ASUK185 - + +
14 ASUK145 - + +
15 ASUK76 - + +
16 ASUK216 - + +
17 ASUK237 - + +
18 ASUK259 - + +
19 ASUK263 - + +
20 ASUK283 + + +
21 ASUK292 + + +
22 ASUK308 - + +
23 ASUK315 + + +
24 ASUK423 - + +

*+, Presence -, Absence
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Table 3: Screening of isolated actinobacterial strains on the basis of color of pigment,

mycelium and appearance of colony and identified genera

S.no. Strain code Pigment color/mycelium/appearance of colony
Color of pigment Mycelium Appearance of

colony

1 ASUKO03 Yellow Rough Dirty based

2 ASUKO07 Whitish yellow Smooth Round

3 ASUK254 Whitish green Rough Thick

4 ASUK145 White Hairy Thread like

5 ASUKG67 Whitish pink Branched Wrinkled

6 ASUKS86 Yellowish pink Branched Wrinkled

7 ASUK46 Whitish creamy Branched Wrinkled

8 ASUK34 Yellowish creamy Branched Smooth

9 ASUK23 Whitish concave Spherical Smooth

10 ASUK60 White cotton Spherical Smooth

11 ASUK79 Whitish Spreader Flattened

12 ASUK224 Whitish thread Branched Flattened

13 ASUKI185 Whitish point Aerial Smooth

14 ASUK145 Whitish cotton like Branched Smooth

15 ASUK76 Purple spreader Granular Wrinkled

16 ASUK216 Whitish yellow cotton Rough Flattened
like growth

17 ASUK237 Whitish cotton Spherical Smooth

18 ASUK259 Whitish scanty Smooth Smooth

19 ASUK263 Pinkish white Flattened and Wrinkled

spherical

20 ASUK283 Whitish spreader flattened Wrinkled

21 ASUK292 Whitish yellow spreader | flattened Wrinkled

22 ASUK308 Yellowish white flattened Wrinkled
spreader

23 ASUK315 Whitish spreader flattened Wrinkled

24 ASUK423 Whitish brown spreader | flattened Wrinkled
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Figure 2: Actinobacterial isolates as isolated on Y1MG6 starch- casein agar medium (1-24) *
*each plate showing single isolate; Numbering from stain 1 to strain 24.
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Keywords: ABSTRACT: Bioremediation of organic compounds and heavy metals has been
recognized to be a successful and effective technique in rhizoremediation of soil
toxicity using the beneficial microbes which produce different metabolites and
enzymes to degrade the toxic compounds/ pesticides available in the soil. In the
present study, actinobacterial isolates were explored and identified for
bioremediation of soil toxicity available in the soil. The actinobacterial isolates
were utilized for the promising PGPR traits and ability to degrade the

Actinobacterial isolates, PGPR traits,
Monocrotophos pesticides,
Bioremediation, Rhizoremediation,
Reduction in soil toxicity,
Recombinant cells, Least toxic
pesticide derivatives

monocrotophos pesticide residues available in the soil. The “opd” gene of
interest responsible for monocrotophos pesticide degradation trait was isolated
and cloned in vector DNA to produce recombinant DNA. The recombinant DNA
was transformed in E. coli cells to produce multiple copies in E. coli cells
resulting in recombinant (transformed) and non-recombinant (non-transformed)
colonies. The transformed E. coli cells were inoculated in nutrient broth having
pesticide concentration. The transformed cells degraded the pesticide, and the
HPLC method determined the derivatives produced. The formulations based on
actinobacterial isolates were tested, and field applications were done to
determine the reduced soil toxicity, if any, observed.
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INTRODUCTION: Bioremediation is also used to
convert hazardous substances into less toxic
components. Microorganisms have a vital role in
the breakdown and mineralization of these
contaminants. Bioremediation as sustainable
technology is significant in examining and reducing
manmade chemicals released into the environment.
Bioremediation is the microorganisms used to
attain the function of  bioremediation.
Bioremediation technology has been commonly
categorized as ex-situ and in-situ bioremediation.
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This article can be accessed online on
www.ijpsr.com

In situ bioremediation comprises the treatment and
elimination of the contaminated material at the site,
whereas, in ex-situ, the contaminated are treated
somewhere  else.  bioventing,  bioleaching,
biostimulation, land farming, composting,
bioaugmentation, rhizofilteration, and
phytoremediation are a few examples of
bioremediation technologies Biodegradation
and bioremediation are similar methods up to an
extent since both of these approaches employ
microorganisms for the alteration or breakdown of
pesticides.

The only difference between these two is that
biodegradation is a natural process whereas
bioremediation is considered technology. Various
aspects are limiting factors for pesticide degrading

microorganisms, such as pH, temperature,
DOI link: http://dx.doi.org/10.13040/1)PSR.0975-8232.14(2).731-39 nulrients, water po[enlial and a number of
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metabolites or pesticide content in soil %
Actinobacterial isolates produce non-antibiotic
molecules which exhibit bioactivities, such as
immuno-suppressors, phytotoxins, bio-pesticides,
Nano-particles, probiotics, enzyme inhibitors and
different enzymes and proteins that are involved in
the degradation of complex polymers and
biomolecules 9‘]2, that single isolates can
mineralize a limited number of these xenobiotic
pesticides. Still, consortia of bacteria are mostly
required for complete degradation of the process.
Members of this group of gram-positive bacteria
have been found to degrade pesticides with widely

different chemical structures, including
organochlorines, s-triazines, triazinones,
carbamates, organophosphates, organ
phosphonates, acetanilides and sulfonylureas.

Single isolates can mineralize a limited number of
these xenobiotic pesticides, but consortia of
bacteria are often required for complete
degradation Bl

MATERIALS AND METHODS:

Screening of Isolates for PGPR Traits: The
actinobacterial isolates were screened for PGPR
traits "%,

A. TAA Production: Indole acetic acid (IAA)
production was quantitatively estimated by
Salkowski method. The actinobacterial cultures
were grown on Luria broth liquid medium at 36+2
°C. Fifty milliliter of Luria Bertani (LB) broth
containing 0.1% DL tryptophan were inoculated
with 500 pl of 48 h old actinobacterial cultures and
incubated in refrigerated incubator shaker at
30+0.1°C at 180 rpm for 48 h in dark. Fully grown
bacterial cultures were centrifuged at 10,000 rpm
for 10 minutes at 4°C. Estimation of IAA
production in the supernatants was done using a
colorimetric assay. One milliliter (1 ml) of
supernatant was mixed with 100 ml of 10 mM
orthophosphoric acid and 2 ml of the Salkowski
reagent (1 ml of 0.5 M FeClI3 in 50 ml of 35%
HCIO4) at 28+2 °C for 30 minutes. The
development of pink colour in test tubes at the end
of the incubation indicated IAA production. The
pink colour absorbance measured the quantification
of TAA at 530 nm after 30 minutes in UV/VIS
spectrophotometer. The results were tabulated as
Higher IAA producers (+++); Medium IAA
producers (++), and Lowest IAA producers (+).

International Journal of Pharmaceutical Sciences and Research
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B. Phosphate Solubilization: A loop full of
isolated pure fresh actinobacterial cultures was
streaked on the Centre of agar plates modified with
Pikovskaya agar with insoluble tricalcium
phosphate (TCP) and incubated for 120 h at
28+2°C 18. The halo zone around the bacterial
colonies indicated positive phosphate solubilization
ability (Pikovskaya, 1948). The results were
tabulated as Higher phosphate solubilizers (+++);
Medium phosphate solubilizers (++), and Lowest
phosphate solubilizers (+).

C. Siderophores and HCN Production:
Qualitative estimation of siderophore production by
the actinobacteria isolates was determined by
adopting the modified chrome azurol sulphonate
(CAS) assay method. Production of siderophore
was determined by developing an orange halo zone
around the actinobacterial colonies. In addition, all
the bacterial isolates were screened for HCN
production. The Colour change of the filter paper
from deep yellow to reddish-brown colour
indicated the production of HCN. The results were
tabulated as Higher Siderophores and HCN
producers (+++); Medium Siderophores and HCN
producers (++) and Lower Siderophores and HCN
producers (+).

D. Catalase Activity: Actinobacterial cultures
were grown in a nutrient agar medium for 48 h at
28°C. The 48-hour-old bacterial colonies were
added with 2-3 drops of hydrogen peroxide (3%)
on a clean glass slide and mixed using a sterile
toothpick. Oxygen evolution as effervescence
indicated catalase activity (Rorth and Jensen,
1967). The results were tabulated as Higher
Catalase producers (+++); Medium Catalase
producers (++), and Lower Catalase producers (+).

Screening of Actinobacterial Isolates for
Monocrotophos Pesticides Degradation:
Primary Screening:

Determination of Zone of Clearance of Pesticide
Degradation: The screening of actinobacterial
isolates for monocrotophos pesticide degradation
was performed as per the method described. The
growth of isolated actinobacterial cultures were
inoculated separately in 100 ml Mineral Salt Media
(MSM) enriched with an addition of 25 ppm MCP
pesticide. These samples were incubated on a
rotary shaker (150 rpm) at 30°C for 7 days. The
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growth curve for the actinobacterial isolates was
determined via optical density/absorbance using
UV- spectrophotometer at various time intervals.
After which one, the cultures were frequently
transferred every 3-4 days or until increased
turbidity was evidenced.

After 3-4 times of repeated sub-culturing, 0.1 ml
culture broth was pipette and introduced in wells
punctured within pesticide agar plates. Cultures
were incubated at 30°C for 5-8 days. Pesticide
degrading isolates were then screened, which
developed a clear zone around the wells
determining clearance 2L

Secondary Screening:

Determination of Pesticide Degradation by
Culture Streak Technique: The pesticide
degradation was observed on pesticide-enriched
agar by streaking the actinobacterial cultures; the
pesticide degradation ability of the actinobacterial
isolates was determined as a clearance zone.

E-ISSN: 0975-8232; P-ISSN: 2320-5148

Expression of Genes of Promising Isolates of
Actinobacteria in E. coli Cells: Escherichia
coli was utilized as one of the organisms of choice
to produce recombinant proteins. Its use as a cell
factory is well-established and it has become the
most popular expression platform. For this reason,
there are many molecular tools and protocols for
the high-level production of multiple functional
proteins. In the present investigation, the genes for
monocrotophos pesticide (MCP) degradation were
isolated from promising actinobacterial isolates,
fused with vector DNA and transformed into E.
coli cells. The recombinant E. coli cells were
further utilized for the biodegradation of
monocrotophos pesticides (MCP). The enzymes for
degradation of monocrotophos pesticides were
identified as  phosphodiesterase  (PTE) or
organophosphorus  hydrolase (OPH) specifically
encoded by the opd gene. This gene has been
Expression in genes of promising isolates of
Actinobacteria in E. coli cells.
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IMAGE 1:

REPRESENTATION OF THE RELATIONSHIPS BETWEEN PESTICIDES,

MICROBIAL

COMMUNITIES AND THE DISCOVERY OF NEW BIODEGRADATION PROCESSES OMICS = HIGH
THROUGHPUT-BASED CHARACTERIZATION OF BIOMOLECULES CHARACTERISTIC OF BIOPROCESSES;
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Biodegradation of Monocrotophos Pesticides:
The concentrations of monocrotophos pesticide
(MCP) at 10 pg/ml were utilized in nutrient broth
in different sets, followed by sterilization and
inoculation of the E. coli cells and incubation of the
broth for 48 hours duration. The degradation of
MCP pesticide in the broth culture was determined
using TLC and HPLC, as described by Chao et al.,
2009. In brief, 4 mL of filtrate was extracted with
ethyl acetate from a 5-mL aliquot of culture
supernatant. All experimental MCP concentrations
were determined at 276 nm by HPLC (PerkinElmer
200 series, CT, USA). The solution filtrate (10 pL)
was separated and added with methanol (1:1). Ten,
it went across 0.45- um PVDF filter and injected
into the HPLC column (C18, 250x4.6 mm, Sum,
Phenomenex, CA, USA). The 10 upL filtered
sample was injected into the HPLC column, and
the 0.5% acetic acid and methanol (1:4 v/v) were
used as eluent at 1 mL/min flow rate.

Formulations of Actinobacterial Strains: The
formulations were zpreparcd as per the following
modified methods **.

1. Alginate-Kaolin Based Granular Formulation
(AL-KAO Granular Formulation): Sodium
alginate solution was prepared by dissolving 20 g
of dry sodium alginate in a minimum volume (10
ml) of sterile distilled water. This mixture was
poured into 1 L of swirling, warm, distilled water
and allowed to mix on the stirrer for 30 min until a
homogeneous suspension was obtained. The
alginate solution was sterilized for 15 min at 121
°C and 101 kPa. Twenty grams of the potent dried
Actinobacterial isolate propagules were mixed
thoroughly with 20 g of previously sterilized kaolin
(aluminum silicate), and the mixture was added in
small portions (2 g) into 1 L of swirling, sterile
distilled water supplemented with 4 drops of
Tween 20. The alginate-kaolin-actinobacterial
mixture was allowed to swirl in the stirrer until
ready for mixing with the sodium alginate solution.
A droplet-forming device was constructed by
attaching a 1-L reagent bottle with a spout at the
bottom to a T-valve outlet system. The entire
device was sterilized for 15 min at 121 °C and 101
kPa before use. The sodium alginate solution and
kaolin mixture were added to the reagent bottle in
1:1 ratio and stirred continuously. At the same
time, the suspension was allowed to drip through
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an Eppendorf pipette tip, attached to the T- 10
valve, into a sterile solution of 0.1 M CaCl,. The
resulting alginate-kaolin beads were then allowed
to stand in a fresh 0.1 M CaCl, solution for 30 min,
filtered through a sterile cheese cloth, and washed
at least three times with sterile distilled water. The
beads were lyophilized at -70 °C, and their dry
weight was recorded. This lyophilized granular
formulation of mycobacterium (hereafter referred
to as beads) was stored in the dark at 4 °C.

2. Flour-Kaolin Based Granular Formulation
(FLO-KAO Granular Formulation): The flour
and kaolin material were sterilized separately for
15 min at 121 °C and 101 kPa. Upon cooling, 200g
of flour, 4 g of kaolin, and 20 g of the inoculum
were mixed thoroughly and sieved through a sterile
250 pm pore screen to obtain a homogeneous
mixture of the three components. To this mixture,
180 ml sterile distilled water supplemented with 2
drops of Tween 20 was added slowly and mixed
thoroughly until a dough was formed. The flakes
were lyophilized at -70°C. The lyophilized
formulations in liquid hereafter referred to as
granules) were stored in the dark at 4°C.

3. Calcium carbonate-CMC Based Powder
Formulation (CC-CMC Powder Formulation):
The calcium carbonate and CMC material was
sterilized separately for 15 min at 121 °C and 101
kPa. Upon cooling, CMC was mixed with 20 g of
the inoculum thoroughly and sieved through a
sterile 250 um pore screen to obtain a
homogeneous mixture. For this mixture (10 Kg)
produced with CMC, the quantity of calcium
carbonate was mixed in 90 Kg concentration. The
lyophilized formulations in liquid, referred to as
powder, were stored in the dark at 4 °C. The
material was further utilized to check the shelf life
of isolates and the application of powder in the
bioremediation of soil toxicity.

RESULTS AND DISCUSSION: As per the
studies performed, 120 soil samples were collected
from different field areas of the Uttarakhand region
(Tehri-Garhwal, Chamoli, Srinagar, Uttarkashi, and
Haridwar) having dominant usage of
monocrotophos pesticides. Amongst these samples,
a total of 280 microbes was isolated; out of which
24 isolates of Actinobacteria (8.57%) were isolated.
The actinobacteria isolates were screened on
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FIG. 2: PRIMARY SCREENING: DETERMINATION
DEGRADATION

OF ZONE OF CLEARANCE OF PESTICIDE

] |- h

FIG. 3: SECONDARY SCREENING- DETERMINATION OF PESTICIDE DEGRADATION BY CULTURE STREAK
TECHNIQUE
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FIG. 4(A): PREPARATION OF RECOMBINANT DNA AND TRANSFORMATION IN E. COLI CELLS
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FIG. 4(B): SCREENING OF RECOMBINANT AND NON- RECOMBINANT COLONIES (BLUE COLONIES WERE
REGARDED AS NON-RECOMBINANT COLONIES WHILE WHITE COLONIES WERE REPRESENTED AS
RECOMBINANT COLONIES)
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DETECTOR A CH1 276NM
Peak # Name Ret. Time Area Height Area % Height %
1 RT2.337 2331 2732519 505147 100.0000 100.0000
Total 2732519 505147 100.0000 100.0000

FIG. 5(A): HPLC CHROMATOGRAM OF ORIGINAL MCP AVAILABLE IN NUTRIENT BROTH

DETECTOR A CHI1 276NM
Area Height
1 2452373 500142 100.0000 100.0000
Total 2452373 500142 100.0000 100.0000
FIG. 5(B): HPLC CHROMATOGRAM OF DEGRADATIVE MCP RESIDUES AVAILABLE IN NUTRIENT BROTH
AFTER BIODEGRADATION
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2.329

Name Area %
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Flour-Kaolin ~ Based  Granular

The transformed cells degraded the pesticide and
derivatives produced were determined by HPLC
method Fig. 5A, Fig. 5B. Three formulations of
actinobacterial strain viz., Alginate-Kaolin Based
Granular ~ Formulation  (AL-KAO  granular
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formulation),
Formulation (FLO-KAO granular formulation),
Calcium carbonate-CMC Based Powder
Formulation (CC-CMC powder formulation) were
prepared and utilized in field trials to study the
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