List of Figures

Figure	Caption	Page
No		No
1	Chemical structures of BaP and NNK	4
2a	Pictorial representation of difference between reductionist approach	7
	and anti-reductionism approach	
2b	Circuit & Network/Interactome Study of Bio-molecules	8
3	Databases used to retrieve genes for BaP and NNK	28
4	Softwares used for generating and analyzing of BaP and NNK rewired PPINs	29
5	For finding the most potent biomolecular targets for BaP and NNK	32
6	For designing cell cycle model and time course analysis	33
7	For designing nanoparticles and analyzing their scavenging	33
	potential against BaP and NNK	
8	Flowchart of the methodology adopted for finding the most potent	34
	biomolecular targets of BaP and NNK using systems biology	
	approach and for finding the most suitable scavenging agent against	
	BaP and NNK.	
9	BaP rewired PPIN (merged network generated by cytoscape). The	36
	PPIN comprises of upregulated and downregulated proteins having	
	2058 nodes and 13850 edges.	
10	Shortest pathlength distribution. 960,000 interactions have the	38
	shortest path length of 4	
11	Avg. clustering coefficient (power law: $y = ax^{-b}$; $a=1.276$, $b=0.249$,	38
	$r^2 = 0.285$)	
12	Node degree distribution (power law: $y=ax^{-b}$; $a=1106.5$, $b=1.408$,	39
	$r^2 = 0.824)$	
13	Neighborhood connectivity distribution (power law: y= ax ^{-b} ; a=	40
	13.316, b= 0.272, $r^2 = 0.590$)	
14	PPIN generation from seed proteins identified from clusters	41
	generated by MCODE	
15	Chart for number of genes involved in the GO enriched pathways	42
16	ClueGO results of GO functional enrichment of key proteins	43
17	Pictorial representation of top 3 proteins interacting with BaP along	53-54
	with their binding energies	

18	Graphical representation of BaP's impact on systems level PIN with their respective key proteins, number of associated and enriched pathways	55
19	Cell cycle designed by cell designer for study of the impact of BaP on cell cycle regulatory machinery	58
20	Simplified cell cycle designed by cell designer for study of the impact of BaP on cell cycle regulatory machinery	59
21	Cell cycle graph in normal condition when BaP and NNK are absent	60
22a	BaP inhibited graph	61
22b	Zoomed in comparative graph of BaP inhibited PTGS2 and p27	62
23	Structures of carbon nanotubes (SWCNT and MWCNT) and Fullerene	64
24	BaP interacting with SWCNT, MWCNT and Fullerene. The binding energies of SWCNT, MWCNT and Fullerene were -10.32 Kcal/mol, -13.46 Kcal/mol and -3.29 Kcal/mol respectively. MWCNT showed the maximum binding energy against BaP.	65-66
25	Pictorial representation of BaP getting adsorbed on SWCNT, MWCNT and Fullerene	67- 68
26	NNK rewired PPIN	71
27	Shortest path length distribution. Approximately 47,000 nodes have	73
	the shortest path length of 3.	
28	Node degree distribution (power law: $y=ax^{-b}$; $a=61.323$, $b=0.861$, $r^2 = 0.824$)	73
29	Neighborhood connectivity distribution (power law: $y=ax^{-b}$; a= 19.838, b= 0.137, r ² = 0.590)	74
30	Avg. clustering coefficient (power law: $y=ax^{-b}$; $a=1.326$, $b=0.277$, $r^2 = 0.285$)	74
31	PPIN construction using seed proteins generated from the modulation of the NNK rewired PPIN	76
32	ClueGO results of GO functional enrichment of key proteins for NNK	78
33	Number of genes involved in the pathways enriched by GO analysis.	78
34	Binding interactions of top 3 proteins with NNK.	82-83
35	Comprehensive graphical representation of the impact of NNK on	84
	system level PIN with their respective key regulatory proteins along with the enriched pathways.	
36	Cell Cycle designed using Cell Designer for the study of impact of NNK on cell cycle regulatory machinery	86
37a	Graph of normal concentration changes in cell cycle regulatory	87
2	biomolecules when NNK is not present.	5.
37b	Normal graph of all the CDK-cyclin complexes of cell cycle without NNK inhibition.	88

iv

38	Graph of cell cycle regulation when NNK inhibits CDK7. Extreme	90
	changes in the concentration changes can be observed when	
	compared with uninhibited graph.	
39	Graph of Cyclin A of cell cycle regulation when NNK is present	92
40	Comparative chart of p27 and inactivated p27 in absence of NNK	94
	and in presence of NNK.	
41	NNK docked on SWCNT, MWCNT and fullerene. The binding	96-97
	energy of SWCNT with NNK was -18.24 Kcal/mol. MWCNT had	
	binding energy of -16.67 Kcal/mol whereas Fullerene showed the	
	binding energy of -3.09 Kcal/mol when docked with NNK.	
42	Adsorption of NNK on SWCNT, MWCNT and Fullerene. SWCNT	98-99
	adsorbed 10 molecules of NNK per nanotube. MWCNT adsorbed	
	12 molecules of NNK per nanotube while fullerene showed a	
	minimum adsorption of 6 molecules of NNK on its surface.	
43	π - π interactions between BaP/NNK and CNTs reduces the	122
	electrostatic repulsion leading to BaP/NNK adsorption on CNTs	